To manage solar air heating systems in winter and summer modes

General diagram – Summer and winter modes

Winter mode (manual adjustment) or T_{ext} < 15°C / 59°F

Summer mode (manual adjustment) or T_{ext} ≥ 15°C / 59°F

maximum mixing temperature T_{mel} at 22°C / 72°F (adjustable)

Working objectives

- Mixing box located upstream from the belt-driven inline square centrifugal fan with three motorized modulating dampers.
- The dampers are arranged in such a way to ensure the prioritization and optimization of the available solar gains throughout the year.
- Setpoints and control sequences are established to ensure occupants' comfort at all times.
- The autonomous and self-regulated system can in principle operate 24/7 without external intervention.

Winter mode (manual adjustment) or Text < 15°C / 59°F

Winter sequence

- Recirculation damper M_{recirc} normally closed
- Solar damper M_{sol} normally open
- Bypass damper M_{bypass} always closed
- Return damper M_{return} normaly open
- The dampers M_{sol} et M_{recirc} are modular and inversely proportional, (i.e. when one is 10% open, the other one is 90% open)
- The return damper M_{return} is isolated

If the mixing temperature $T_{mix} < 18^{\circ}C$ (adjustable), then the recirculation damper M_{recirc} opens and the solar damper M_{sol} and the return damper M_{return} close to maintain the mixing temperature T_{mix} at 18°C (adjustable)

If the mixing temperature $T_{mix} \ge 18^{\circ}C$ (adjustable), then the recirculation damper M_{recirc} closes and the solar damper M_{sol} and the return damper M_{return} open to maintain the minimal mixing temperature T_{mix} at 18°C (adjustable)

Summer sequence

- Bypass damper M_{bypass} normally closed
- Solar damper M_{sol} normally open
- Recirculation damper M_{recirc} always closed
- Return damper M_{return} always open
- The dampers M_{sol} et M_{avoid} are modular and inversely proportional, (i.e. when one is 10% open the other is 90% open)
- The return damper M_{return} is isolated

If the mixing temperature $T_{mix} > 22^{\circ}C$ (adjustable), then the bypass damper M_{bvbass} opens and the solare damper M_{sol} and the return damper M_{return} close to maintain the mixing temperature T_{mix} at 22°C (adjustable)

When the mixing temperature $T_{mix} < 22^{\circ}C$ (adjustable), then the bypass damper M_{bvpass} closes and the solar damper M_{sol} and the return damper M_{return} open to maintain the mixing temperature T_{mix} at 22°C (adjustable)

Mixing box upstream from make-up air unit

General diagram for all seasons

Solar damper opening

In summer and winter modes

